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Coherent structures in a turbulent environment
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A systematic method is proposed for the determination of the statistical properties of a field consisting of a
coherent structure interacting with turbulent linear waves. The explicit expression of the generating functional
of the correlations is obtained, performing the functional integration on a neighborhood in the function space
around the soliton. The results show that the non-Gaussian fluctuations observed in the plasma edge can be
explained by the intermittent formation of nonlinear coherent structures.

DOI: 10.1103/PhysRevE.65.026406 PACS number~s!: 52.35.Ra, 52.35.Sb, 05.20.2y, 05.45.Yv
tic
p
ld

lic

nd
s

ro
ir-
o
d
i

x
tu
c
F
pe
ta
rb

ow
ur
n

ed
th
e

-
m
he
tiv

ve
n
rt

ic

io
ia
re

-
om
han

ed
ani-
der-
t be
hy-

ce
s-

rent

-
ous
not

rift
a
nd
c-

lyti-
ure
the

cal
-
od,
er-
udy
n-

by
y
n-

take

in
en-

od
n is
I. INTRODUCTION

In a recent work@1# it has been proposed a systema
analytical method for the investigation of the statistical pro
erties of a coherent structure interacting with turbulent fie
The method is developed here in detail and possible app
tions or developments arise.

The nonlinearity of the dynamical equations of fluids a
plasma is the determining factor in the behavior of the
systems. The current manifestation is the generation, f
almost all initial conditions, of turbulent states, with an
regular aspect of fluctuations implying a wide range
space-and-time scales. The fluctuations seem to be ran
and a statistical characterization of the fluctuating fields
appropriate. However, it is known both from theory and e
periment that the same fields can have, in particular si
tions, stable and regular forms that can be identified as
herent structures, for example, solitons and vortices.
most general conditions one should expect that these as
are both present and this requires to study the mixed s
consisting of coherent structures and homogeneous tu
lence.

Numerical simulations of magnetohydrodynamics sh
that in general cases a coherent structure emerges in a t
lent plasma, it moves while deforming due to the interactio
with the random fields around it and eventually is destroy
In plasma turbulence a coherent structure is build up by
inverse spectral cascade or by merging and coalescenc
small-scale structures@2–4#. The nonlinearity of the equa
tions for the drift waves in a nonuniform, magnetized plas
permits the formation of solitary waves in addition to t
usual small-amplitude dispersive modes. The convec
nonlinearity~of the Poisson bracket type!, can lead tolow-
frequency convective structuresin magnetized plasma@5–9#.
The structures are not solitons in the strict sense but are
robust. It is even possible that the state of plasma turbule
can be represented as a superposition of coherent vo
structures~generated by a self-organization process! and
weakly correlated turbulent fluctuations.

Naturally, the coherent structures influences the statist
properties of the fields~the correlations!, in particular the
spectrum. In this context it is usual to say that the deviat
of the correlations of the fluctuating fields from the Gauss
statistics is associated with the presence of the cohe
1063-651X/2002/65~2!/026406~15!/$20.00 65 0264
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structures and it is namedintermittency. Numerical simula-
tions @10# of the two-dimensional Navier-Stokes fluid turbu
lence have shown coherent structures evolving from rand
initial conditions and in general energy spectra steeper t
k23 have been atributed to intermittency~patchy, spatial in-
termittent paterns!. These coherent structures are long liv
and disappear only by coalescence, the latter being m
fested as spatial intermittency. In these studies it was un
lined that the coherent structures have effects that canno
predicted by closure methods applied to mode-coupling
erarchies of equations.

The difficulty of the analytical description is the absen
from theory of well-established technical methods for inve
tigating the plasma turbulence in the presence of cohe
structures. While for the instability-induced turbulence~via
nonlinear mode coupling!, systematic renormalization proce
dures have been developed, the problem of the simultane
presence of coherent structures and drift turbulence has
received a comparable detailed description.

In the recently proposed method@1#, the starting point is
the observation that the coherent structure and the d
waves, although very different in form, are similar from
particular point of view: the first realizes the extremum a
the latter is very close to the extremum of the action fun
tional that describes the evolution of the plasma. The ana
cal framework is developed such as to exploit this feat
and is based on results from well-established theories:
functional statistical study of the properties of the classi
stochastic dynamical systems~in the Martin-Siggia-Rose ap
proach!; the perturbed inverse scattering transform meth
allowing to calculate the field of perturbed nonlinear coh
ent structures; the semiclassical approximation in the st
of the quantum particle motion in multiple minima pote
tials.

The dilute gas of plasma solitons has been studied
Meiss and Horton@11# who assumed a probability densit
function of the amplitudes characteristic of the Gibbs e
semble. We analyze the same nonlinear equation but
into account the drift wave turbulence.

A brief discussion on the closure methods developed
the study of drift wave turbulence provides us the argum
tation for the need of a different approach~Sec. II!. Section
III contains a description of the general lines of the meth
proposed. A more technical presentation of the calculatio
©2002 The American Physical Society06-1
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F. SPINEANU AND M. VLAD PHYSICAL REVIEW E 65 026406
given in Sec. III B. The particular case of the drift wav
equation is developed in detail in Sec. IV and in Sec. V
explicit expression of the generating functional is used
the calculation of the correlation functions. The results a
the conclusions are presented in the last section. Some
tails of calculations are given in the Appendix.

II. THE NONLINEAR DYNAMICAL EQUATIONS

We consider the plasma confined in a strong magn
field and the drift wave electric potential in the transver
plane (x,y) where y corresponds to the poloidal directio
andx to the radial one in a tokamak. We shall work with th
radially symmetric Flierl-Petviashvili soliton equation@12#
studied in Refs.@11,13,14#:

~12rs
2¹'

2 !
]w

]t
1vd

]w

]y
2vdw

]w

]y
50, ~1!

wherers5cs /V i , cs5(Te /mi)
1/2, and the potential is scale

asw5(Ln /LTe
)(eF/Te). HereLn andLTe

are, respectively,
the gradient lengths of the density and temperature. The
locity is the diamagnetic velocityvd5rscs /Ln . The condi-
tion for the validity of this equation is (kxrs)(krs)

2

!he(rs /Ln), wherehe5Ln /LTe
.

The exact solution of the equation is

ws~y,t;y0 ,u!523S u

vd
21D sech2F 1

2rs
S 12

vd

u D 1/2

3~y2y02ut!G , ~2!

where the velocity is restricted to the intervalsu.vd or u
,0. The function is represented in Fig. 1. In Ref.@11# the
radial extension of the solution is estimated as (Dx)2

;rsLn . In our work we shall assume thatu is very close to
vd , u*vd ~i.e., the solitons have small amplitudes!.

The nonlinear equations for the drift waves are known
generate as solutions irregular turbulent fields, but also e

FIG. 1. Variation of the form of the solitonws(y) with the
velocity, u.
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coherent structures of the type~2!, depending on the initial
conditions. Typical statistical quantities are the correlatio
such aŝ w(x,y,t)w(x8,y8,t8)&;uxÀx8uzut2t8uz, where for
the homogeneous turbulence the exponentsz andz are cal-
culated by the theory of renormalization or by spectral b
ance equations, using closure methods@15#. Various closure
methods have been developed as perturbations around G
sianity and they are valid for small deviation from the Gau
ian statistics~for a detailed review, see Ref.@16#!. We see
intuitively that this approach cannot be extended to the
scription of the coherent structures. This can also be see
more analytical terms. A quantity that is unavoidable in t
calculation of the correlations is the average of the expon
tial of a functional of the fluctuating field, consider simp
^exp(w)& ~for example, in the inverse of the Vlasov operat
using the Fourier transformation, the potential appears in
formal expression of the trajectory, i.e., at the expone!.
This quantity can be written schematically as@16#

^exp~w!&5expF(
n

1

n!
^^wn&&G , ~3!

where ^^wn&& represents the cumulant of ordern ~i.e., the
irreducible part of the correlation, after substracting the co
binations of the lower order cumulants!. For Gaussian statis
tics the first two cumulants are different from zero (n51,
average andn52, dispersion!, all others are zero. Nonvan
ishing of the higher order cumulants is the signature of n
Gaussian statistics. In the perturbative renormalization
assume slight deviation from Gaussianity, i.e., small abso
values of the next order cumulants~e.g., the kurtosis must be
close to 3, the Gaussian value! and vanishing of the highe
order cumulants. This assumption is obviously invalid in t
case of coherent structures. The field of a coherent struc
has long range, persistent correlations imposed by its reg
geometry, which naturally requires nonvanishing very la
order cumulants@i.e., many terms in the sum at the expone
in Eq. ~3!# and excludes any perturbative expansion.

In particular, the closure of the nonlinear equation for t
two-point correlation~based on the retaining the directly in
teracting triplet! can account for the small-scale correlatio
related to the space-dependent relative diffusion, i.e.,
clump effect @15,17,18#, but the spectrum obtained in thi
framework cannot account for the possible existence of
coherent structures. This clearly suggests that we must fi
different approach.

III. COHERENT STRUCTURES IN A TURBULENT
BACKGROUND

A. The outline of the method

We present the basic lines of an approach that can pro
a statistical description of the coherent structure in a tur
lent background. The physical origin of this approach is
observation that the nonlinear equation whose solution is
coherent structure~the vortex soliton! also has classical drif
waves as solutions, in the case of very weak nonlinearity
a certain sense~that will become more clear further on!, the
vortex soliton and the drift waves belong to the same fam
6-2
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COHERENT STRUCTURES IN A TURBULENT ENVIRONMENT PHYSICAL REVIEW E65 026406
of dynamical configurations of the plasma. Our approa
which is designed to put in evidence and to exploit this pr
erty, consists of the following steps.

We start by constructing the action functional of the s
tem. The dynamical equation is the Euler-Lagrange equa
derived from the condition of extremum of this function
and the exact solution is the vortex soliton~2!.

By using the exponential of the action we construct
generating functional of the irreducible correlations ofw.
This functional contains all the information on the cohere
structure and the drift turbulence. The correlations are
tained via functional differentiations. This requires the fo
mal introduction of a perturbation of the system, through
interaction with an external current. Throughout the wo
this perturbation will be considered a small quantity and
nally it will be taken zero.

The generating functional is by definition a functional i
tegral over all possible configurations of the system and
integral must be calculated explicitely. The simplest thing
do is to determine the configuration of the system~with
space and time dependence! that extremises the action, b
equating the first functional variation of the action with ze
and solving this equation, this will give the vortex solito
~modified due to the small interaction term!. Then one should
replace this solution in the expression of the action. This
the lowest approximation and it does not contain anyth
related to the drift wave turbulence.

At this point we can benefit from the particular physics
the drift waves. The vortex soliton is the exact solution of t
fully nonlinear equation and is a localized potential pert
bation with regular, cylindrical symmetric form. The line
drift waves are harmonic potential perturbations propaga
with constant velocity~the diamagnetic velocity in the cas
of the drift poloidal propagation in tokamak!. Although the
drift waves have very different geometry they are solutio
of the same equation as the vortex, but for negligible m
nitude of the nonlinear term. The drift waves do not exac
realize the extremum of the action functional, but obtain
action very close to this extremum. This means that the d
waves and the vortex soliton are close in the function sp
in the sense of the measure defined by the exponential o
action. In other terms the drift waves are in a function
neighborhood of the vortex~for this measure!. This suggests
to perform the functional integral with better approximatio
which means to perform the integration over a functio
neighborhood of the vortex solution. This will automatica
include the drift waves in the generating functional of cor
lation that so will contain information on both the cohere
structure and the drift waves. The function space neighb
hood over which the functional integration is extended
limited by the measure~exponential of the action! that sev-
erly penalizes all configurations of the system that are
from the solution realizing the extremum~i.e., the vortex
soliton!. As in any stationary phase method there are os
lations that strongly suppress the contribution of the confi
rations that are far~in the sense of the measure! from the
soliton. In practice we shall expand the action in a functio
Taylor series around the soliton solution and keep the t
with the second functional derivative.
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In this perspective the drift waves appear as fluctuati
around the soliton solution. This is compatible with the n
merical simulations that show that the vortices are accom
nied by a tail of drift waves. During the interaction of th
vortices linear drift waves are ‘‘radiated’’@19#. On the other
hand, the analytical treatment of the perturbed vortex so
tion by the perturbed inverse scattering transform sho
similar tail of perturbed field, following the soliton. Thi
strengthens our argument that integrating close to the vo
means to include the drift waves in the generating function

The functional integral can be performed exactly and
determine the generating functional of the potential corre
tions. We shall calculate the two-point correlation by p
forming double functional derivative at the external curre

B. Expansion around a soliton

1. The action and the generating functional of the correlations

The analytical framework is similar to the model of qua
tum fluctuations around the instanton solution in the se
classical calculation of the transition amplitude for the p
ticle in a two-well potential~see Ref.@20#!. Let us write
formally the equation for a nonlinear plasma waves as

Ôw50, ~4!

where the fieldw(x,y,t) represents the ‘‘field’’~coherent
structure and drift waves! and the operatorÔ is the nonlinear
operator of the Eq.~1!. This equation should be derived from
the condition of extremum of an action functional that mu
reflect the statistical nature of our problem. The fieldw obeys
a purely deterministic equation, but the randomness of
initial conditions generates a statistical ensemble of real
tions of the system evolutions~space-time configurations!.
We shall follow the Martin-Siggia-Rose method of constru
ing the action functional but in the path-integral formalism
for which we give in the following a very short descriptio
@21–25#. First, we consider a formal extension from the s
tistical ensemble of realizations of the system’s space-t
configurations to a larger space of functions that may inclu
even nonphysical configurations. Every function is d
cretized in space and time, so it will be represented a
collection of varablesw i , each attached to the correspondi
space-time pointi. In this space of functions, the selection
the configurations that correspond to the physical ones~so-
lutions of the equation of motion! is performed through the
identification with Diracd functions, in every space-time
point

)
i

d„w i2w~xi ,yi ,t i !…d~Ôw!, ~5!

and integration over all possible functionsw, i.e., over the
ensemble of independent variablesw i . Using the Fourier
representation for everyd function we get

E )
i

dw iE )
i

dx i exp@ ix i Ôw~xi ,yi ,t i !#. ~6!
6-3
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F. SPINEANU AND M. VLAD PHYSICAL REVIEW E 65 026406
Going to the continuum limit, a new functionx(x,y,t), ap-
pears which is similar to the Fourier conjugate ofw. The
generating functional of the correlation functions is

Z5E D@w~x,t !#D@x~x,t !#

3expH i E dx8dt8x~x8,t8!Ôw~x8,t8!J , ~7!

where the functional measures have been introduced ax
[(x,y).

The random initial conditionsw0(y) can be included by a
Dirac d functionald„w(t0 ,y)2w0(y)…. As explained in@1#,
instead of this exact treatment~accessible only numerically!
we exploit the particularity of our approach, i.e., the conn
tion between the functional integration and the delimitat
of the statistical ensemble; the way we perform the fu
tional integration is an implicit choice of the statistical e
semble. We choose to build implicitely the statistical e
semble, collecting all configurations that have the same t
of deformations~given in our formulas byx̃J). All these
configurations belong to the neighborhood of the extrem
in function space and we take them into account, by perfo
ing the integration over this space. In doing so we assu
that the ensemble of perturbed configurations induced by
‘‘external’’ excitation (J below! of the system is the same a
the statistical ensemble of the system’s configurations ev
ing from random initial conditions.

We must add to the expression in the integrand at
exponential a linear combination related to the interaction
the fieldsw andx with external currentsJw andJx

Z→ZJ5E D@w~x,t !#D@x~x,t !#exp$ iSJ%, ~8!

SJ[E dx8dt8@x~x8,t8!Ôw~x8,t8!1Jww1Jxx#.

It is now possible to obtain correlations by functional diffe
entiation, for example,

^w~x2 ,y2 ,t2!w~x1 ,y1 ,t1!&

5
1

ZJ

d2ZJ

dJw~x2 ,y2 ,t2!dJw~x1 ,y1 ,t1!
U

J50

. ~9!

For the explicit calculation of the generating function
we need the functionsw andx, which extremize the action

dSJ

dw
50 ~10!

dSJ

dx
50.

2. Schema of calculation of the generating functional

In the absence of the currentJ the Eqs.~10! have as
solutions for w the nonlinear solitons~vortices! @26,27#.
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More generally, the basic solution of theKdV equation~on
which the Flierl-Petviashvili equation can be mapped! is the
periodic cnoidal function that becomes, when the modulus
the elliptic function is close to 1, the soliton. When the d
tance between the centers of the solitons is much larger
their spatial extension~dilute gas! the general solution can b
written as a superposition of individual solitons, with diffe
ent velocities and different positions@11#. For simplicity we
shall consider in this work a single vortex soliton and in t
last section we shall comment on the extension of
method to many solitons.

The position of the center of the soliton rises the diffic
problem of thezero modes@20#. Except for a brief commen
about the relation of the zero modes with the Gaussian fu
tional integration~see below!, we shall avoid this problem
and postpone the discussion of this topic to a future wor

In the presence of the external currentJ, the equations
resulting from the extremization of the actionSJ become
inhomogeneous, and the solutions areperturbed solitons.
This point is technically nontrivial and we shall use the r
sults obtained by Karpman@28# who considered the invers
scattering transform method applied to the perturbed sol
equation. We find the approximate solutionwJs and xJs of
the inhomogeneous equations~i.e., including the externa
currentJ). The result depends on the currentsJ, and this will
permit us to perform functional differentiations in order
calculate the correlation, as shown in Eq.~9!. As a first step
in obtaining the explicit form ofZJ , the perturbed soliton
solutions depending onJ must be introduced in the expres
sion of the actionSJ . After that we perform the expansion o
the functionsw andx around the coherent solution,

w5wJs1dw, ~11!

x5xJs1dx.

This gives

ZJ5exp~ iSJs!E D@dw#D@dx#expH E dx8dt8dx~x8,t8!

3S d2Ô

dwdx
UwJs ,xJs

D dw~x8,t8!J
or

ZJ5exp~ iSJs!
1

2ni n
~2p!n/2S det

d2Ô

dwdx
U

wJs ,xJs

D 21/2

,

~12!

since the integral is Gaussian@23#. The determinant is calcu
lated using the eigenvalues

S d2Ô

dwdx
U

wJs ,xJs

D cn~x,t !5lncn~x,t ! ~13!

and
6-4
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detS d2Ô

dwdx
U

wJs ,xJs

D 5)
n

ln . ~14!

Since the action is invariant to the arbitrary position of t
center of the soliton there are directions in the function sp
where the fluctuations are not bounded and, in particular,
not Gaussian. This requires the introduction of a set of c
lective coordinates and after a change of variables the fu
tional integrations along those particular directions are
placed by usual integrations over the collective variab
with inclusion of Jacobian factors. The zero eigenvalues
the determinant~corresponding to thezero modes! are ex-
cluded in this way. We shall avoid this complicated proble
and assume a given position for the center of the vortex

IV. APPLICATION TO THE VORTEX SOLUTION OF THE
NONLINEAR DRIFT WAVE

A. The action functional

In order to adimensionalize Eq.~1! we introduce the
space-and-time scalest→V21t andy→rsy and the equation
becomes

~12¹'
2 !

]w

]t
1S vd

Vrs
D ]w

]y
2S vd

Vrs
Dw

]w

]y
50. ~15!

For simplicity of notation we keep the symbolvd for the
adimensional velocity (vd /Vrs). The equation does no
change in form but now all variables are adequately norm
ized, and theaction

S5E dydt Lw ~16!

is also adimensional.
We have to calculate explicitely the scalar functionx.

Based on the extended knowledge developed in field the
it seems reasonable to assume that this function repres
the generalization of the functions that have the oppo
evolution compared tow: if w evolves toward infinite time,
thenx comes from infinite time toward the initial time. Ifw
diffuses thenx antidiffuses~see Ref.@30#!. The general char-
acteristics of this behavior suggest to representx as the ob-
ject with the opposite topology thanw. If w has a certain
topological class, thenx has the opposite topological class.
w is an instanton thenx is an anti-instanton. In our case, ifw
is the vortex solution, thenx must the ‘‘antivortex’’ solution,
with opposite vorticity everywhere compared tow. In our
case of a single vortex,x must simply be a negative vortex

In general terms, the direct~i.e., the vortex and random
drift waves! solutionw arises from an initial perturbation tha
evolving in time breaks into several distinct vortices~soli-
tons! and a tail of drift waves, as shown by the inverse sc
tering method. The functionally conjugated~‘‘regressive’’!
function x is at t5` a collection of vortices and drift wave
turbulence that evolving backward in time, towardt50, coa-
lesce and build up into a single perturbation, the same as
initial condition ofw. We can restrict our analysis to the tim
02640
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range where the two functions have similar patterns~but op-
posite!, which simply means to choose the time interval f
from the initial and asymptotic limits. As shown by analyt
cal and numerical studies, the vortices~positive and nega-
tive! are robust patterns and the time evolution simply co
sists of translations without decay. In conclusion we can t
for the time range far from the boundariest50 andt5T,

x52w. ~17!

To see this more clearly, we write down the action a
then the Euler-Lagrange equations, with the currentJ in-
cluded.

SJ@x,w#5E
0

L

dyE
0

T

dt LJ,w ~18!

with the notation

LJ,w5xF ~12¹'
2 !

]w

]t
1vd

]w

]y
2vdw

]w

]y G1Jww1Jxx.

~19!

When performing integrations by parts the boundary con
tions of the two functions prevents us from taking the in
grals of exact differentials as vanishing, but this just p
duces terms that do not contribute to the determination of
solution of extremum. We shall first change the Eq.~19! such
as to obtain by functional extremization an~Euler-Lagrange!
equation for the functionx

LJ,w
(1)5x

]w

]t
2@¹'

2 x#
]w

]t
1vdx

]w

]y
2vdxw

]w

]y
1Jww1Jxx.

~20!

Now we write the condition of extremum for the action fun
tional and obtain the Euler-Lagrange equation

d

dt

dLJ,w
(1)

dS ]w

]t D 1
d

dx

dLJ,w
(1)

dS ]w

]x D 1
d

dy

dLJ,w
(1)

dS ]w

]y D 2
dLJ,w

(1)

dw
50.

~21!

This equation can be written as

~12¹'
2 !

]x

]t
1vd

]x

]y
2vdw

]x

]y
5Jw . ~22!

An equivalent form of the action is

SJ@x,w#5E
0

L

dyE
0

T

dt LJ,x ~23!

with

LJ,x52w
]x

]t
1~¹'

2 w!
]x

]t
2vdw

]x

]y
1vd

w2

2

]x

]y
1Jww

1Jxx. ~24!
6-5
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F. SPINEANU AND M. VLAD PHYSICAL REVIEW E 65 026406
The equation Euler-Lagrange for the functionx is obtained
from the extremum condition on the functional Eq.~23!

d

dt

dLJ,x

dS ]x

]t D
1

d

dx

dLJ,x

dS ]x

]x D 1
d

dy

dLJ,x

dS ]x

]y D 2
dLJ,x

dx
50.

~25!

This equation reproduces the nonlinear vortex equation w
an inhomogeneous term

~12¹'
2 !

]w

]t
1vd

]w

]y
2vdw

]w

]y
52Jx . ~26!

Comparing thehomogeneousEqs. ~22! ~with Jw50) and
~26! ~with Jx50) we see that

x52w, ~27!

is indeed the solution of thehomogeneousEq. ~22!, i.e., the
negative vortex is the solution forx.

We must remember that the ‘‘external’’ currents are ar
trary and later, after functional differentation, they will b
taken zero. This allows us to start from the configuratio
given by thehomogeneousequations and Eq.~27! and study
the small changes using perturbative methods develope
the framework of the inverse scattering transform. We w
only use the currentJw that will be denotedJ and already
takeJx50.

The final form of the action that will be used later in th
work is

SJ@x,w#5E
0

L

dyE
0

T

dtH x~12¹'
2 !

]w

]t
1vdx

]w

]y

32vdxw
]w

]y
1JwJ . ~28!

B. The condition of extremum of the action functional

The Euler-Lagrange equations for the two functionsx and
w are obtained from the first functional derivative of th
action SJ : dSJ /dx50 anddSJ /dw50. The first equation
~which is the original equation! has the solution~2!. It does
not depend on the currentJ ~since the corresponding curre
Jx has been taken zero!. However, for uniformity of notation
we shall writewJs ,

wJs~x,y,t ![ws~x,y,t !. ~29!

The second Euler-Lagrange equation is the equation
x, with the inhomogeneous term given by the currentJ:

~12¹'
2 !

]x

]t
1vd

]x

]y
2vdw

]x

]y
5J. ~30!

The solution is

xJs~x,y,t !52ws~x,y,t !1x̃J~x,y,t !, ~31!
02640
th

-

s

in
l

or

where 2ws(x,y,t) represents the ‘‘free’’ solution of the
variational equation, i.e., the negative vortex~antisoliton!
and x̃J(x,y,t) is the small modification induced by an inho
mogeneous small term,J(x,y,t). Since the function
x̃J(x,y,t) is the perturbation of the negative-vortex solutio
we will use the Eq.~26! but with the opposite current~i.e.,
2J instead ofJ), as Eq.~30! requires.

C. Second order functional expansion and the eigenvalue
problem for the calculation of the determinant

Now we shall expand the actionSJ@w# to second order
around the saddle-point solution. Write

w5wJs1dw, ~32!

x5xJs1dx,

where the function (dw,dx) is a small difference from the
extremum solution. The expanded form of the action will
written as

SJ@x,w#5SJ@wJs ,xJs#1
1

2 S d2SJ

dwdx UwJs ,xJsD dwdx,

where obviously the absence of the linear term is due to
fact that (wJs ,xJs) is the solution at the extremum and

SJ@wJs ,xJs#5E
0

L

dyE
0

T

dtFxJs

]wJs

]t
2~¹'

2 xJs!
]wJs

]t

1vdxJs

]wJs

]y
2vdxJswJs

]wJs

]y
1JwJsG .

~33!

Few manipulations are necessary to make the second f
tional variation ofSJ symmetric indw and dx. Again this
will imply boundary terms, but these are now zero since
variationsdw anddx vanish at the limits of the space-tim
domain, by definition. The transformations are simply in
grations by parts and give

1

2
dxS d2SJ

dwdx UwJs ,xJsD dw5
1

2
dwdxS ĝ 2â2b̂

â2b̂ 0
D

3S dw

dx
D , ~34!

where

â5~12¹'
2 !

]

]t
1vd

]

]y
2vdS ]wJs

]y D , ~35!

b̂5
1

2
vdS ]wJs

]y D ,

ĝ522vdxJs

]

]y
.

6-6
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In the generating functional of the correlations, the exp
sion gives, after performing the Gaussian integral

ZJ5exp~ iSJ!
1

i n
~2p!n/2FdetS d2SJ

dwdx UwJs ,xJsD G21/2

. ~36!

As stated before, the det will be calculated as the produc
the eigenvaluesln

detS d2SJ

dwdx UwJs ,xJsD5)
n

ln . ~37!

We must find the eigenvalues of the differential operator
pearing in Eq.~34!

S ĝ 2â2b̂

â2b̂ 0
D S cn

w

cn
x D 5lnS cn

w

cn
x D , ~38!

which gives the following equation

F ĝ2
1

ln
~ â21b̂â2âb̂2b̂2!Gcn

w5lncn
w . ~39!

The functionsdw(y,t) anddx(y,t) represent the difference
between the solutions at extremum~solitons! and other func-
tions that are in a neighborhood~in the function space! of the
solitons. According to the discussion above, the functio
that are ‘‘close’’ to the solitons, for the Flierl-Petviashvil
equation are drift waves. For this reason the operator
represents the dispersion~i.e., ¹'

2 ) will be replaced with its

simplest form,2 k̄'
2 for these waves, withk̄' representing an

average normalized wave number for the pure drift tur
lence. However, the operator will be retained when app
on the functions related to solitons, since these solutions
their existence to the balance of nonlinearity and dispers
The following detailed expressions are obtained for the
erators involved in this equation:

â25F ~12¹'
2 !

]

]t
1vd

]

]y
2vdS ]wJs

]y D G2

5~11 k̄'
2 !2S ]

]t D
2

2vdF ~12¹'
2 !

]wJs

]t G ]

]y
1vd~12wJs!~11 k̄'

2 !
]2

]t]y

1vd~12wJs!~11 k̄'
2 !

]2

]y]t
2vd

2~12wJs!S ]wJs

]y D ]

]y

1vd
2~12wJs!

2
]2

]y2
, ~40!

b̂â5
1

2
vdS ]wJs

]y D ~11 k̄'
2 !

]

]t
1

1

2
vd

2S ]wJs

]y D ~12wJs!
]

]y
,

~41!
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âb̂5
1

2
vdF ~12¹'

2 !
]2wJs

]t]y G1
1

2
vd

2~12wJs!S ]2wJs

]y2 D
1

1

2
vd

2~12wJs!S ]wJs

]y D ]

]y
1

1

2
vdS ]wJs

]y D ~11 k̄'
2 !

]

]t
,

~42!

b̂25
1

4
vd

2S ]wJs

]y D 2

. ~43!

The square brakets are used to underline that the differe
operators are not acting outside and the only operatio
multiplication. We use the equation verified bywJs to make
the following replacement:

F ~12¹'
2 !

]wJs

]t G52vd~12wJs!S ]wJs

]y D . ~44!

The equation becomes

2H ~11 k̄'
2 !2

]2

]t2
12~11 k̄'

2 !vd~12wJs!
]2

]y]t

1vd
2~12wJs!

2
]2

]y2
2

3

4
vd

2S ]wJs

]y D 2J cn
w

1lnS 22vdxJs

]

]yDcn
w5ln

2cn
w . ~45!

We now take into account the propagating nature of
drift waves and make the change of variablest→t and y
→y2vdt, i.e., we change to the system of reference mov
with the diamagnetic velocity. We simplify the equation a
suming that the most important space-time variation is wa
like and replace]/]t52vd(]/]y). By this change of vari-
ables the soliton will not be at rest in the new referen
system, but it will move very slowly since we have assum
that u*vd . We make another approximation by neglecti
the slow motion of the soliton. This restricts us to the wa
number spectrum but considerably simplifies the calcu
tions. The space variable that will be denoted againy mea-
sures the space from the fixed center of the soliton, in
moving system. The difference between theKdV soliton,
which is one dimensional and depends exclusively ony and
the vortex that is a two-dimensional structure will be cons
ered in the simplest form as described by the estimation
Meiss and Horton for thex extension of the vortex. For con
venience we suppress the indexn and replacecn

w by q.

H @~11 k̄'
2 !vd2vd~12wJs!#

2
]2

]y2
1~2l vdxJs!

]

]y

1Fl22
3

4
vd

2S ]wJs

]y D 2G J q50. ~46!

We have a suggestive confirmation that the genera
function ZJ ~via the actionSJ) potentially contains configu-
6-7
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rations of the system consisting of simple drift waves.
perturbation consisting of drift waves and propagating w
the diamagnetic velocityvd is an approximate solution of th
original equation for small amplitude~i.e., small nonlinear-
ity!. Due to its particular structure, the Martin-Siggia-Ro
action functional is exactly zero when calculated with t
exact solution, in the absence of any external currentJ. The
action expanded to the second order then gives, for no vo
(wJs50, xJs50)

F ]2

]y2
1S l

k̄'
2 vd

D 2Gq50, ~47!

which implies periodic oscillations in the space variabley
with ~recall that everything is adimensional!

l5kyvd~ k̄'
2 !. ~48!

Returning to the Eq.~46!, we write it in the following
form:

S ]2

]y2
1A

]

]y
1BD q50, ~49!

where

A[
2l

vd

xJs

~ k̄'
2 1wJs!

2
, ~50!

B[

l2

vd
2

2
3

4 S ]wJs

]y D 2

~ k̄'
2 1wJs!

2
.

Now we make the standard transformation of the unkno
function

q5w expS 2
1

2E
y

A~y8!dy8D ~51!

and obtain

w91S B2
A8

2
2

A2

4 Dw50, ~52!

where prime means derivation with respect toy. After replac-
ing the two extremum solutionswJs andxJs from Eqs.~29!
and ~31!, this equation is written in the following form to
exhibit the dependence onl:

w91~l2t11lt21t3!w50, ~53!

with the notations

t1~y![
1

vd
2

h22ws
2

h4
1

2

vd

ws

h4
x̃J , ~54!
02640
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t2~y![2
1

vd
S ]ws

]y D2c2h

h3
1

2

vd

S ]ws

]y D
h3

x̃J2
1

vd

1

h2 S ]x̃J

]y
D ,

~55!

t3~y![2
3

4

1

h2 S ]ws

]y D 2

, ~56!

and

c[ k̄'
2 , ~57!

h5c1ws .

The functionst i(y) are represented fori 51,2 in Figs. 2
and 3. The function

U~l;y![l2t11lt21t3 ~58!

has singularities at the points whereh vanishes. We introduce
the notationyh for the location of the singularities, takin
into account the symmetry aroundy50, the center of the
soliton

h~6yh!50. ~59!

Since the soliton is very localized, the functionU has very
fast variations close to the singularities. The slow variat
of the function U(l;y) over most of the space interva
(2L/2,1L/2) becomes very fast due to the growth of t
absolute values oft1 , t2, andt3 near6yh , on spatial inter-
vals having an extension of the order of the spatial unit, i
rs in physical terms. Since the physical model leading to o
original equation cannot accurately describe the phys
processes at such scales, we shall adopt the simplest app
mation ofU, assuming that it reaches infinite absolute va
at points that are located within a distance ofrs of the actual
positions of the singularities,6yh . We have checked that th

FIG. 2. The functiont1(y) for a particular soliton velocity,
u51.725vd .
6-8
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exact position of the assumedinfinite value of U has no
significant impact on the final results, which can be e
plained by observing thatt1,2,3 will be integrated on. The
total space interval is now divided into three domain
(2L/2,2yh) ~external left!, (2yh ,yh) ~internal!, and
(yh ,L/2) ~external right!. Here ‘‘internal’’ and ‘‘external’’ re-
fer to the region approximately occupied by the soliton. T
form of the functionU imposes the functionw to vanish at
the limits of these domains. In a more general perspect
the fact thatw behaves independently on each domain ha
consequence with statistical mechanics interpretation:
generating functional~similar to any partition function! is
obtained by integrating over the full space of the syste
physical configurations and behaves multiplicatively for a
splitting of the whole function space into disjoint subspac
In particular the functional integration over the space
functions dw and dx actually consists of three functiona
integrations over the disjoint function subspaces correspo
ing to the three spatial domains. The fact that our phys
model is restricted to spatial scales larger thanrs necessarily
has an impact on the maximum number of eigenvaluesln
that should be retained in the infinite product giving the d
terminant, but we shall not need to use this limitation.

For absolute values of the parameterl greater than unity
@which will be confirmeda posteriori, by the expressions
~62! and~71! below#, the three terms in the expression ofU
have very different contributions. The termst3 is practically
negligible, and the term witht1 is always much greater tha
t2 in absolute value. In the following we consider separat
the three domains.

On the ‘‘external left’’ domain, the functiont1 is positive.
If we fix at zero the amplitude and the phase ofw at the limit
2L/2 the condition that the solution vanishes at2yh gives,
for l real,

E
2L/2

2yh
dy8~l2t11lt21t3!1/252pn. ~60!

FIG. 3. The functiont2(y) of the Eq.~53! for the sameu.
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In the integrand, the first term is factorized and, taking in
account the relative magnitude of the terms, we expand
square root and obtain

ln
l a11b11

g1

ln
l

52pn, ~61!

i.e.,

ln
l 5

2pn

a1
S 12

b1 /~2p!

n D , ~62!

where

a15E
2L/2

2yh
dy8At1~y8!, ~63!

b15E
2L/2

2yh
dy8

t2~y8!

At1~y8!
, ~64!

g15E
2L/2

2yh
dy8

t3~y8!

At1~y8!
, ~65!

andg1 has been neglected. We note thatb1 is positive.
On the ‘‘external right’’ domain the functiont1 is positive

but t2 is negative. The condition on the phase is

E
yh

L/2

dy8~l2t11lt21t3!1/252pn8, ~66!

and introduce similar notations

a25E
yh

L/2

dy8At1~y8!5a1 , ~67!

b25E
yh

L/2

dy8
t2~y8!

2At1~y8!
52b1 , ~68!

g25E
yh

L/2

dy8
t3~y8!

2At1~y8!
. ~69!

The equation then becomes

ln8
r a21b21

g2

ln8
r 52pn8, ~70!

or

ln8
r

5
2pn8

a2
S 11

b1 /~2p!

n8
D . ~71!

The infinite product of eigenvalues gives, for the ‘‘exte
nal’’ region @29#
6-9
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)
n

ln
l )

n8
ln8

r
5)

n
S 2pn

a1
D 2

)
n

S 12
b1

2/~2p!2

n2 D
5

sin~b1/2!

b1/2 )
n

S 2pn

a1
D 2

. ~72!

In the ‘‘internal’’ region, the functiont1 is negative. The
relations between the magnitudes of the absolute value
the functionst1 , t2, and t3 are preserved. Thenl will be
complex. Due to the antisymmetry of the functiont2 we can
suppose that the unknown functionw takes zero value aty
50. We introduce the notations

ac5E
0

yh
dy8A2t1~y8!, ~73!

bc5E
0

yh
dy8

t2~y8!

2A2t1~y8!
, ~74!

gc5E
0

yh
dy8

t3~y8!

2A2t1~y8!
, ~75!

which arereal numbers. The condition

ln
i ac1bc1

gc

ln
i

52p in, ~76!

gives ~after neglectinggc) for the complex numberln
i ,

ln
i 5ac

21~2pn!S 11
bc

2

~2p!2n2D 1/2

expF2 i arctanS 2pn

bc
D G .
~77!

The infinite product of these eigenvalues is

)
n

ln
i 5)

n
ac

21~2pn!expF2 i arctanS 2pn

bc
D G

3)
n

S 11
bc

2/~2p!2

n2 D 1/2

. ~78!

The numberbc is smaller than unity and for largen the
argument of the exponential will be more and more close
2 i p/2. We make the approximation that the exponential c
be replaced with2 i . Then we obtain

)
n

ln
i 5Fsinh~bc/2!

bc/2
G1/2

)
n

~2 i !2pn

ac
. ~79!

On the ‘‘external’’ regions the functionst1 , t2 are not
symmetrical around the centery50 since the perturbed soli
ton develops a ‘‘tail’’ that is not symmetrical. However, w
take this perturbation to be small and assume the same
solute value for the functionb1 on both external domains.
02640
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We remark that we remain with two quantities in whic
all the functional dependence on the currentJ is packed for
‘‘exterior’’ b1 ~hereafter denoteds) and for ‘‘interior’’ bc
~hereafter denotedb).

ZJ5exp~ iSJ!S )
n

~2p!

i D FdetS d2SJ

dwdx U
wJs ,xJs

D G21/2

5const exp~ iSJ!F b/2

sinh~b/2!G
1/4F s/2

sin~s/2!G
1/2

, ~80!

where

const5)
n

S ~2 i !ac

2pn D 1/2a1

n
~81!

will disappear after the normalizations required by the cal
lation of the correlations~see below!.

V. CALCULATION OF THE CORRELATIONS

The two-point correlation can be obtained by a dou
functional differentiation at the external currentJ:

^w~y2!w~y1!&5ZJ
21 d2ZJ

idJ~y2!idJ~y1!
U

J50

.

The main achivement of this approach is that it provides
explicit expression of the generating functional. We intr
duce the notations

A5A@J#[F b/2

sinh~b/2!G
1/4

, ~82!

B5B@J#[F s/2

sin~s/2!G
1/2

, ~83!

and drop the factor const; actually the latter depends ona1
andac and thus on the currentJ and contributes to the func
tional derivatives. However, taking a formal limitN to the
number of factors in Eq.~81! we find that the functional
derivatives ofa1 and ac give additive terms that vanish in
the limit N→`. Then we drop const since it disappears af
dividing to ZJ and takingJ[0. In this way Eq.~80! becomes

ZJ5exp~ iSJ!AB. ~84!

We calculate the functional derivatives,

dZJ

idJ~y1!
5F dSJ

dJ~y1!
1

1

A

dA

idJ~y1!
1

1

B

dB

idJ~y1!Gexp~ iSJ!AB.

~85!

We will also need the functional derivative atJ(y2), with a
similar expression. The second derivative,
6-10
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ZJ
21 d2ZJ

idJ~y2!idJ~y1!
U

J50

5
dSJ

dJ~y2!

dSJ

dJ~y1!
1

d2SJ

idJ~y2!dJ~y1!
1

1

A

dA

idJ~y2!

dSJ

dJ~y1!
1

1

B

dB

idJ~y2!

dSJ

dJ~y1!

1
1

A

dA

idJ~y1!

dSJ

dJ~y2!
1

1

B

dB

idJ~y1!

dSJ

dJ~y2!
1

1

A

dA

idJ~y1!

1

B

dB

idJ~y2!
1

1

A

dA

idJ~y2!

1

B

dB

idJ~y1!

1
1

A

d2A

idJ~y2!idJ~y1!
1

1

B

d2B

idJ~y2!idJ~y1!
. ~86!
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The detailed expressions of these terms are given in the
pendix. The terms are calculated numerically using the
tailed expressions ofws , ]ws /]y, x̃J and]x̃J /]y. The con-
tributions are represented in Figs. 4–7 and their sum
Fig. 8.

The first term reproduces the self-correlation of the s
ton and represents the connection with the results of R
@11#, with our particular simplifications: single soliton an
fixed ~nonrandom! position of its center. As can easily b
seen, the first order functional derivatives ofSJ to the current
J reduce to the functionws calculated in the correspondin
points. The term with the double functional derivative of t
action represents the contribution to the self-correlation
the soliton due to a statistical ensemble of initial conditio
without drift waves. All mixed terms~i.e., containing both
the action and one of the factorsA or B) represent interaction
between the perturbed soliton and the drift waves. The te
containing exclusively the factorsA and/or B refers to the
drift wavesin the presenceof the perturbed soliton.

VI. DISCUSSION AND CONCLUSIONS

The formulas obtained by functional differentiation of th
generating functional are complicated and a numerical ca
lation is necessary. We chose a particular value of the sol
velocity ~which also fixes its amplitude!: u51.725vd and let
the variablesy1 andy2 sample the one-dimensional volum
of length L50.2 m. The physical parameters are chos

FIG. 4. The contribution to the two-point correlation from th
term B21@dB/dJ(y2)#A21@dA/dJ(y1)#.
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such thatrs'1023 m and vd'571 m/s. We recall that
there are two particular symmetry limitations of our calcu
tion. ~1! The soliton center is assumed fixed~at y50), espe-
cially for avoiding the complicated problem of thezero
modes. ~2! Due to the asymmetry of the perturbed soliton t
the terms that results from the functional differentiation a
also asymmetric. These are only limitations of our calcu
tion and in no way reflect the reality of a isotropic motion
many solitons in a real turbulent plasma. In order to see
what extent our result can be useful for understanding
~much more complicated! real situation we will symmetrize
these terms in the unique mode that is accessible to our
dimensional calculation, i.e., take into account the mixing
perturbed solitons moving in the two directions on the lin

The amplitude of the modifications of the soliton depen
on a parameter, which is the average time of interaction w
the perturbation. This average time is comparable with
time required to crossL at a speed ofvd and is limited since
the growth of the perturbation cannot exceed the soliton
self.

The figuresare conventional representations of functio
of two variables(y1 ,y2); they do not correspond to a two
dimensional geometry. For this reason it is not expected
havecircular symmetry. The contributions to the correlatio
from the last two factors in Eq.~86! have amplitudes similar
or less by a factor of few units, compared to the pure solit
The factors coming from ‘‘internal’’ part are peaked and l
calized on the soliton extension while the ‘‘external’’ pa

FIG. 5. The contribution to the two-point correlation from th
term A21@dA/dJ(y2)#B21@dB/dJ(y1)#.
6-11



,

ot

-
n

hi
th

lar
in
e

ale

c

li-

ver
ton

s
unc-

nt
ng

be
ny

gly
ble
av-
n-
f

-

the

e

e
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gives terms oscillating on (y1 ,y2). In wave number space
there are contributions to both low-k and high-k regions. The
spectrum of an unperturbed soliton is smooth and mon
nously decreasing from the peak value atk50, as shown in
Fig. 9. Figure 10 shows much more structure. In the lowk
part there are many local peaks, an effective manifestatio
the periodic character of the terms@as shown by Eq.~72!#.
This arises from the discrete nature of the eigenvalues, w
is induced by the second order differential operator and
vanishing of the eigenmodes at the positions of the singu
ties'6yh . The singularities are generated by the vanish
of the norm of the operatorâ, which makes ambiguous th
assumption of propagating wave character,] t52vd]y . The
large-k part mainly reflects the structure of the small-sc
shape perturbation of the soliton, comming fromb-related
terms. Figure 11 is a (k,v) spectrum obtained fromv2ku
50 and repeating the calculations for various soliton velo
tiesumax.u.vd . Although we cannot afford highumax since
the expressions oft1,2,3(y) depend on the assumptionu
*vd , we remark local peaks in contrast to the ‘‘pure so
ton’’ result of Ref.@11#.

FIG. 6. The contribution to the two-point correlation from th
term A21d2A/@dJ(y2)dJ(y1)#.

FIG. 7. The contribution to the two-point correlation from th
term B21d2B/@dJ(y2)dJ(y1)#.
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For simplicity we have assumed a single soliton. Howe
the calculation can be readily extended to the multisoli
case, considering instead of Eqs.~29! and ~31! sums over
many individual soliton solutions with different velocitie
and positions of the centers. These sums replace the f
tions wJs and xJs in the expressions of the operatorsâ, b̂,
and ĝ. If the velocities are all greater but not too differe
from vd the change of variables to the referential movi
with vd @described in the paragraph below Eq.~45!# will
leave a very slow time variation that eventually may
treated perturbatively. Many solitons will also generate ma
singularities arising from the vanishing of the functionh, and
this will factorize the space of functions and correspondin
the generating functional. It will become, however, possi
to consider random positions and random velocities and
erage them with distribution functions for the Gibbs e
semble, as in@11#. This is very simple with the first term o
Eq. ~86!, which should be compared directly with Ref.@11#,
but technically very difficult with the terms involving func
tional derivatives ofA and/orB.

The first results suggest that the non-Gaussianity at

FIG. 8. The perturbation to the correlation in physical space.

FIG. 9. Contour plot of the vortex (k1 ,k2) spectrum.
6-12
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plasma edge can be explained by the presence of coh
structures. The contribution of avalanches to the devia
from the Gaussian statistics cannot be excluded but
shown for self-organized systems@31#, they have a scaling
that should be easily recognized, at least in frequency
main.

In conclusion we have developed an approach that all
us to calculate the statistical properties of a coherent st
ture in a turbulent background. Compared to the stand
renormalization, this approach is at the opposite limit in w
concerns the relation ‘‘coherent structure/wave turbulenc
highlightning the coherent structure. However, it offers co
paratively greater possibilities for the extension of this st
ies to the more realistic problem of cascading wave tur
lence mixed with rising and decaying coherent structures
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FIG. 10. Contour plot of the spectrum of the vortex perturbed
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APPENDIX: EXPLICIT EXPRESSIONS FOR THE
FUNCTIONAL DERIVATIVES

We shall first concentrate on the derivatives of the t
factorsA andB,

dB

dJ~y1!
5

d

dJ~y1! F s/2

sin~s/2!G
1/2

5
1

4 F 1

sin~s/2!
1

s

2

cos~s/2!

sin2~s/2!
G

3F s/2

sin~s/2!G
21/2S ds

dJ~y1! D ~A1!

and

d2B

dJ~y2!dJ~y1!
5

d2

dJ~y2!dJ~y1! F s/2

sin~s/2!G
1/2

5H 2
1

8 F s/2

sin~s/2!G
1/211cos2~s/2!

sin2~s/2!

2
1

16F s/2

sin~s/2!G
23/2F 1

sin~s/2!

1
s

2

cos~s/2!

sin2~s/2!
G 2J S ds

dJ~y2! D S ds

dJ~y1! D
1

1

4 F s/2

sin~s/2!G
21/2F 1

sin~s/2!

1
s

2

cos~s/2!

sin2~s/2!
G S d2s

dJ~y2!dJ~y1! D . ~A2!

For the exterior domains,

s5s01s̃J11s̃J2 ~A3!

with

s05
1

2E2L/2

2yh
dy8F 2S ]ws

]y D
2c

h
21

~h22ws
2!1/2

G , ~A4!

s̃J15
1

2E2L/2

2yh
dy8F S ]ws

]y D 1

h~h22ws
2!1/2

3S 22
ws~2c2h!

h22ws
2 D x̃J

extG , ~A5!

s̃J25
1

2E2L/2

2yh
dy8F2

1

~h22ws
2!1/2

S ]x̃J
ext

]y
D G . ~A6!

We have the following connected expressions:

y

-
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ds

dJ~y1!
5

ds̃J1

dJ~y1!
1

ds̃J2

dJ~y1!
, ~A7!

ds̃J1

dJ~y1!
5

1

2E2L/2

2yh
dy8S ]ws

]y D 1

h~h22ws
2!1/2S 22

ws~2c2h!

h22ws
2 D

3S dx̃J
ext

dJ~y1!
D , ~A8!

ds̃J2

dJ~y1!
5

1

2E2L/2

2yh
dy8

~21!

~h22ws
2!1/2

d

dJ~y1!
S ]x̃J

ext

]y
D ,

~A9!

and

d2s

dJ~y2!dJ~y1!
5

d2s̃J1

dJ~y2!dJ~y1!
1

d2s̃J2

dJ~y2!dJ~y1!
,

~A10!
s

s B

T.

ys
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d2s̃J1

dJ~y2!dJ~y1!
5

1

2E2L/2

2yh
dy8S ]ws

]y D 1

h~h22ws
2!1/2

3S 22
ws~2c2h!

h22ws
2 D S d2x̃J

ext

dJ~y2!dJ~y1!
D ,

~A11!

d2s̃J2

dJ~y2!dJ~y1!
5

1

2E2L/2

2yh
dy8

~21!

~h22ws
2!1/2

d2

dJ~y2!dJ~y1!

3S ]x̃J
ext

]y
D . ~A12!

For the ‘‘interior’’ region, the derivatives ofA, ~which are
strightforward! will require the calculation of the derivative
of b.
b5
1

2E0

yh
dy

2
1

vd
S ]ws

]y D2c2h

h3
1

2

vd

1

h3 S ]ws

]y D x̃J
int2

1

vd

1

h2

dx̃J
int

dy

S 1

vd
2

ws
22h2

h4 D 1/2S 12
2ws

ws
22h2

x̃J
intD 1/2 .
the

.
n.
The functionx̃J
int and its derivative are present in the expre

sion of b:

b5b01b̃J11b̃J2 ,

b05
1

2E0

yh
dyF2S ]ws

]y D 2c2h

h~ws
22h2!1/2G ,

b̃J15
1

2E0

yh
dyF S ]ws

]y D 1

h~ws
22h2!1/2S 22

ws~2c2h!

ws
22h2 D x̃J

intG ,
-
b̃J25

1

2E0

yh
dyF2

1

~ws
22h2!1/2

S dx̃J
int

dy
D G ,

and the derivatives atJ are easily calculated, as fors.
The formulas above need to specify the expression of

functionsx̃J
ext , ]x̃J

ext/]y, and of their functional derivatives
We use the results of the analysis carried out by Karpma
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