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Coherent structures in a turbulent environment
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A systematic method is proposed for the determination of the statistical properties of a field consisting of a
coherent structure interacting with turbulent linear waves. The explicit expression of the generating functional
of the correlations is obtained, performing the functional integration on a neighborhood in the function space
around the soliton. The results show that the non-Gaussian fluctuations observed in the plasma edge can be
explained by the intermittent formation of nonlinear coherent structures.
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[. INTRODUCTION structures and it is namedtermittency Numerical simula-
tions[10] of the two-dimensional Navier-Stokes fluid turbu-

In a recent work{1] it has been proposed a systematiclence have shown coherent structures evolving from random
analytical method for the investigation of the statistical prop-initial conditions and in general energy spectra steeper than
erties of a coherent structure interacting with turbulent fieldk 2 have been atributed to intermittengyatchy, spatial in-
The method is developed here in detail and possible applicdermittent paterns These coherent structures are long lived
tions or developments arise. and disappear only by coalescence, the latter being mani-

The nonlinearity of the dynamical equations of fluids andfested as spatial intermittency. In these studies it was under-
plasma is the determining factor in the behavior of thesdined that the coherent structures have effects that cannot be
systems. The current manifestation is the generation, frompredicted by closure methods applied to mode-coupling hy-
almost all initial conditions, of turbulent states, with an ir- erarchies of equations.
regular aspect of fluctuations implying a wide range of The difficulty of the analytical description is the absence
space-and-time scales. The fluctuations seem to be randditom theory of well-established technical methods for inves-
and a statistical characterization of the fluctuating fields idigating the plasma turbulence in the presence of coherent
appropriate. However, it is known both from theory and ex-structures. While for the instability-induced turbulenega
periment that the same fields can have, in particular situanonlinear mode couplingsystematic renormalization proce-
tions, stable and regular forms that can be identified as cadures have been developed, the problem of the simultaneous
herent structures, for example, solitons and vortices. Fopresence of coherent structures and drift turbulence has not
most general conditions one should expect that these aspeceseived a comparable detailed description.
are both present and this requires to study the mixed state In the recently proposed methéil], the starting point is
consisting of coherent structures and homogeneous turbihe observation that the coherent structure and the drift
lence. waves, although very different in form, are similar from a

Numerical simulations of magnetohydrodynamics showparticular point of view: the first realizes the extremum and
that in general cases a coherent structure emerges in a turhiire latter is very close to the extremum of the action func-
lent plasma, it moves while deforming due to the interactiongional that describes the evolution of the plasma. The analyti-
with the random fields around it and eventually is destroyedcal framework is developed such as to exploit this feature
In plasma turbulence a coherent structure is build up by thend is based on results from well-established theories: the
inverse spectral cascade or by merging and coalescence finctional statistical study of the properties of the classical
small-scale structure2—4]. The nonlinearity of the equa- stochastic dynamical systerfia the Martin-Siggia-Rose ap-
tions for the drift waves in a nonuniform, magnetized plasmgproach; the perturbed inverse scattering transform method,
permits the formation of solitary waves in addition to the allowing to calculate the field of perturbed nonlinear coher-
usual small-amplitude dispersive modes. The convectivent structures; the semiclassical approximation in the study
nonlinearity (of the Poisson bracket tyjpecan lead tdow-  of the quantum particle motion in multiple minima poten-
frequency convective structuresmagnetized plasmid—9].  tials.

The structures are not solitons in the strict sense but are very The dilute gas of plasma solitons has been studied by
robust. It is even possible that the state of plasma turbulend#leiss and Hortor{11] who assumed a probability density
can be represented as a superposition of coherent vortéunction of the amplitudes characteristic of the Gibbs en-
structures(generated by a self-organization progessidd semble. We analyze the same nonlinear equation but take
weakly correlated turbulent fluctuations. into account the drift wave turbulence.

Naturally, the coherent structures influences the statistical A brief discussion on the closure methods developed in
properties of the fieldgthe correlations in particular the the study of drift wave turbulence provides us the argumen-
spectrum. In this context it is usual to say that the deviatiortation for the need of a different approat®ec. I). Section
of the correlations of the fluctuating fields from the Gaussiarlll contains a description of the general lines of the method
statistics is associated with the presence of the cohereproposed. A more technical presentation of the calculation is
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coherent structures of the typg2), depending on the initial
conditions. Typical statistical quantities are the correlations,
: \ such as{@(x,y,t)o(x",y’,t'))~|x—x'|¢|t—t'|%, where for
18y \\ the homogeneous turbulence the exponegnémdz are cal-
'3 N culated by Fhe theqry of renormalization or by spectral bal-
Al ~§ \ ance equations, using closure methpds). Va_rlous closure
sﬁg& . methods have been developed as perturbations around Gaus-
’ =§E§5§§§§\ sianity and they are valid for small deviation from the Gauss-
05 5555g5§$$§§ ian statistics(for a detailed review, see RefL6]). We see
§§§§§§§§§§$§\ intuitively that this approach cannot be extended to the de-
B *§§§§§§§$§ scription of the coherent structures. This can also be seen in
< SSSSSSY
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‘ more analytical terms. A quantity that is unavoidable in the
> 60 calculation of the correlations is the average of the exponen-
20 tial of a functional of the fluctuating field, consider simply
0 ¥ip, (exp(p)) (for example, in the inverse of the Vlasov operator,
-60 using the Fourier transformation, the potential appears in the

FIG. 1. Variation of the form of the solitorpg(y) with the ~ [Ormal expression of the trajectory, i.e., at the expopent
velocity, u. This quantity can be written schematically [d$]
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given in Sec. llIB. The particular case of the drift wave (exp(go)):exr{z i<<¢n>> (3)
n n! ’

equation is developed in detail in Sec. IV and in Sec. V the
explicit expression of the generating functional is used for
the calculation of the correlation functions. The results andvhere((¢")) represents the cumulant of order(i.e., the

the conclusions are presented in the last section. Some direducible part of the correlation, after substracting the com-

tails of calculations are given in the Appendix. binations of the lower order cumulant&or Gaussian statis-
tics the first two cumulants are different from zeno<(1,
Il. THE NONLINEAR DYNAMICAL EQUATIONS average anah=2, dispersiom all others are zero. Nonvan-

_ _ _ _ishing of the higher order cumulants is the signature of non-

We consider the plasma confined in a strong magnetiGGaussian statistics. In the perturbative renormalization we

field and the drift wave electric potential in the transversalassume slight deviation from Gaussianity, i.e., small absolute
plane §,y) wherey corresponds to the poloidal direction values of the next order cumularitsg., the kurtosis must be
andx to the radial one in a tokamak. We shall work with the close to 3, the Gaussian vajuend vanishing of the higher

radially symmetric Flierl-Petviashvili soliton equatidd2]  order cumulants. This assumption is obviously invalid in the

studied in Refs[11,13,14: case of coherent structures. The field of a coherent structure
has long range, persistent correlations imposed by its regular
_ 2p2 ‘?_4’ ‘9_‘P_ (?_90_ geometry, which naturally requires nonvanishing very large
(1=psVi)—+tuvyg vap—-=0, (1) - :
at ay ay order cumulant$i.e., many terms in the sum at the exponent

o in Eqg. (3)] and excludes any perturbative expansion.
whereps=cs/€;, cs=(T./m;)"% and the potential is scaled | particular, the closure of the nonlinear equation for the
ase=(L,/Ly)(e®/Te). HerelL, andLy_are, respectively, two-point correlationbased on the retaining the directly in-
the gradient lengths of the density and temperature. The veeracting triplet can account for the small-scale correlations
locity is the diamagnetic velocity ;= p<Cs/L,,. The condi- related to the space-dependent relative diffusion, i.e., the
tion for the validity of this equation is kips)(kps)? clump effect[15,17,18, but the spectrum obtained in this
<7e(ps/Ly), Wherene=Lp/L1 . framework cannot account for the possible existence of the

The exact solution of the equation is coherent structures. This clearly suggests that we must find a

different approach.
1 ( vd) 1/2
— |1 —
2ps

u

u
¢s(y:tiYo,U)= _3(U_d_ 1) secht lll. COHERENT STRUCTURES IN A TURBULENT

BACKGROUND

X(y—Yyo—ut)|, (2 A. The outline of the method

We present the basic lines of an approach that can provide
where the velocity is restricted to the intervaisvy or u  a statistical description of the coherent structure in a turbu-
<0. The function is represented in Fig. 1. In REEL] the  lent background. The physical origin of this approach is the
radial extension of the solution is estimated asx)®>  observation that the nonlinear equation whose solution is the
~pskn. In our work we shall assume thatis very close to  coherent structur&he vortex solitop also has classical drift
vg4, U=vy (i.e., the solitons have small amplitudles waves as solutions, in the case of very weak nonlinearity. In

The nonlinear equations for the drift waves are known toa certain senséhat will become more clear further prthe
generate as solutions irregular turbulent fields, but also exaefortex soliton and the drift waves belong to the same family
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of dynamical configurations of the plasma. Our approach, In this perspective the drift waves appear as fluctuations
which is designed to put in evidence and to exploit this prop-around the soliton solution. This is compatible with the nu-
erty, consists of the following steps. merical simulations that show that the vortices are accompa-
We start by constructing the action functional of the sys-hied by a tail of drift waves. During the interaction of the
tem. The dynamical equation is the Euler-Lagrange equatioMortices linear drift waves are “radiated19]. On the other
derived from the condition of extremum of this functional hand, the analytical treatment of the perturbed vortex solu-
and the exact solution is the vortex solit(®). tion by the perturbed inverse scattering transform shows

By using the exponential of the action we construct theSimilar tail of perturbed field, following the soliton. This
generating functional of the irreducible correlations @f ~ Strengthens our argument that integrating close to the vortex
This functional contains all the information on the coherentM&ans to include the drift waves in the generating functional.
structure and the drift turbulence. The correlations are ob- 1Nhe functional integral can be performed exactly and we
tained via functional differentiations. This requires the for-d€términe the generating functional of the potential correla-

mal introduction of a perturbation of the system, through theions. We shall calculate the two-point correlation by per-
interaction with an external current. Throughout the Work’formmg double functional derivative at the external current.
this perturbation will be considered a small quantity and fi-
nally it will be taken zero. B. Expansion around a soliton

The generating f_unctiona_l is by_ definition a functional in-_ 1. The action and the generating functional of the correlations
tegral over all possible configurations of the system and this ] o
integral must be calculated explicitely. The simplest thing to  The analytical framework is similar to the model of quan-
do is to determine the configuration of the systéwith  tum fluctuations around the instanton solution in the semi-
space and time dependeidbat extremises the action, by classical calculation of the transition amplitude for the par-
equating the first functional variation of the action with zeroticle in a two-well potential(see Ref.[20]). Let us write
and solving this equation, this will give the vortex soliton formally the equation for a nonlinear plasma waves as
(modified due to the small interaction texrithen one should

replace this solution in the expression of the action. This is O¢=0, (4
the lowest approximation and it does not contain anything
related to the drift wave turbulence. where the fielde(x,y,t) represents the “field”(coherent

At this point we can benefit from the particular physics of structure and drift wavesand the operatod is the nonlinear
the drift waves. The vortex soliton is the exact solution of thegperator of the Eq(1). This equation should be derived from
fully nonlinear equation and is a localized potential pertur-the condition of extremum of an action functional that must
bation with regular, cylindrical symmetric form. The linear reflect the statistical nature of our problem. The figldbeys
drift waves are harmonic potential perturbations propagating purely deterministic equation, but the randomness of the
with constant velocitythe diamagnetic velocity in the case jnjtial conditions generates a statistical ensemble of realiza-
of the drift poloidal propagation in tokampkAlthough the  tions of the system evolutionspace-time configurations
drift waves have very different geometry they are solutionsye shall follow the Martin-Siggia-Rose method of construct-
of the same equation as the vortex, but for negligible maging the action functional but in the path-integral formalism,
nitude of the nonlinear term. The drift waves do not exactlyfor which we give in the fo||owing a very short description
realize the extremum of the action functional, but obtain ar21-295. First, we consider a formal extension from the sta-
action very close to this extremum. This means that the driffistical ensemble of realizations of the system’s space-time
waves and the vortex soliton are close in the function spacgonfigurations to a larger space of functions that may include
in the sense of the measure defined by the exponential of tr@/en nonphysica| Conﬁgurations_ Every function is dis-
action. In other terms the drift waves are in a functionalcretized in space and time, so it will be represented as a
neighborhood of the vorteffor this measure This suggests  collection of varables; , each attached to the corresponding
to perform the functional integral with better approximation, space-time pointt In this space of functions, the selection of
which means to perform the integration over a functionakne configurations that correspond to the physical qses
neighborhOOd of the vortex solution. This will aUtomatica”y lutions of the equation of moUOnS performed through the

include the drift waves in the generating functional of corre-jgentification with Dirac s functions, in every space-time
lation that so will contain information on both the coherent pgjnt

structure and the drift waves. The function space neighbor-

hood over which the functional integration is extended is ~

limited by the measuréexponential of the actiorthat sev- [T 8(ei—e(xi.yi,1)8(09), )
erly penalizes all configurations of the system that are far !

from the solution realizing the extremuiine., the vortex . . . . .

soliton). As in any stationary phase method there are oscil@nd integration over all possible functiogs i.e., over the
lations that strongly suppress the contribution of the configu€nsemble of independent variables. Using the Fourier
rations that are fafin the sense of the measyfeom the  'ePresentation for every function we get

soliton. In practice we shall expand the action in a functional

Taylor series around the soliton solution and keep the term P

wit)r/1 the second functional derivative. P J H d‘pij H dxi X IxiO(xr. ¥ty ] ©
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Going to the continuum limit, a new functiop(x,y,t), ap-  More generally, the basic solution of thkedV equation(on
pears which is similar to the Fourier conjugate @f The  which the Flierl-Petviashvili equation can be mappedthe
generating functional of the correlation functions is periodic cnoidal function that becomes, when the modulus of
the elliptic function is close to 1, the soliton. When the dis-
tance between the centers of the solitons is much larger than
their spatial extensiofdilute gas the general solution can be
written as a superposition of individual solitons, with differ-
xexp[if dx'dt’ y(x',t")Oe(x',t') 1, (7)  ent velocities and different positiofi$1]. For simplicity we
shall consider in this work a single vortex soliton and in the

last section we shall comment on the extension of the
method to many solitons.

The position of the center of the soliton rises the difficult
problem of thezero mode$20]. Except for a brief comment

Dirac g fL;ncht.ionaI e(to.y) — ¢°(y))'.t’l;\|s ex$lained iril],l about the relation of the zero modes with the Gaussian func-
instead of this exact treatmefaccessible only numerically 5| integration(see below, we shall avoid this problem
we exploit the particularity of our approach, i.e., the conNeCyng postpone the discussion of this topic to a future work.
tion between the functional integration and the delimitation

f the statistical ble: th ‘ the f In the presence of the external currehtthe equations
of the statistical ensemble, the way we perform the unC'resulting from the extremization of the acti@®y become
tional integration is an implicit choice of the statistical en-

Lo R o inhomogeneous, and the solutions turbed solitons.
semble. We choose to build implicitely the statistical en- 9 et

. ) . This point is technically nontrivial and we shall use the re-
semble, collecting all configurations that have the same tYPE its obtained by Karpmai28] who considered the inverse

of deformations(given in our formulas byy;). All these  gcattering transform method applied to the perturbed soliton
configurations belong to the neighborhood of the extremunyquation. We find the approximate solutigns and y ;s of

in function space and we take them into account, by performene inhomogeneous equatioftise., including the external
ing the integration over this space. In doing so we assumeyrentJ). The result depends on the curredfsind this will
that the ensemble of perturbed configurations induced by aermit us to perform functional differentiations in order to
the statistical ensemble of the system’s configurations evolvi, obtaining the explicit form ofZ,, the perturbed soliton
ing from random initial conditions. solutions depending od must be introduced in the expres-

We must add to the expression in the integrand at thgjon of the actiors,. After that we perform the expansion of
exponential a linear combination related to the interaction ofy,¢ functionse and y around the coherent solution

the fieldse and y with external currentd, andJ,

Z=J Dle(x,1)ID[x(x,1)]

where the functional measures have been introducedxand

=(x,y).
The random initial conditiongq(y) can be included by a

¢=¢@it 0, (11

Z_’ZJZJ Dle(x,H) ID[x(x,t)exp{iS;}, (tS) s
X~ XJsT OX-

stf dx’dt'[x(x',t')Op(x' 1)+ I 0+ x]. This gives

It is now possible to obtain correlations by functional differ- 7.= is jD so1DI S fd rdt’ Svix’ t’
entiation, for example, 1= €XpiS,s) | DIoe]Dlox]ex X XXt

(X2,Y2,t2) @(X1,Y1,t1) 820
(@(X2,Y2,t2) @(X1,Y1,t1)) X| 5= o toe So(x' t')
1 5°Z, © Pox
Zy 0J,(X2,Y2,12) 03 o(Xq, Y1, t) [ ;4" or
For the explicit calculation of the generating functional oA -1/2
: . ; : ) 1 60
we need the functiong and y, which extremize the action Z;=exp(iS;e) (24r)"2 detﬁ )
20" pox
5SJ 351 XJs (12)
—=0 (10
o¢
since the integral is Gaussifp3]. The determinant is calcu-
8S; lated using the eigenvalues
ox .
820 B 13
2. Schema of calculation of the generating functional opox o x YOG =Anyn(X.1) (13
Js A Js

In the absence of the curredtthe Egs.(10) have as
solutions for ¢ the nonlinear solitongvortices [26,27). and
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520 range where the two functions have similar patteing op-
de =H Nn- (14 posite, which simply means to choose the time interval far
( S ox ) n from the initial and asymptotic limits. As shown by analyti-
cal and numerical studies, the vorticgmositive and nega-
Since the action is invariant to the arbitrary position of thetive) are robust patterns and the time evolution simply con-
center of the soliton there are directions in the function spacsists of translations without decay. In conclusion we can take
where the fluctuations are not bounded and, in particular, arfor the time range far from the boundaries 0 andt=T,
not Gaussian. This requires the introduction of a set of col-
lective coordinates and after a change of variables the func- X=—¢. (a7
tional integrations along those particular directions are re-
placed by usual integrations over the collective variables, To see this more clearly, we write down the action and
with inclusion of Jacobian factors. The zero eigenvalues othen the Euler-Lagrange equations, with the currérin-
the determinanfcorresponding to theero modesare ex- cluded.
cluded in this way. We shall avoid this complicated problem

357 XJs

and assume a given position for the center of the vortex. - T
given p sixel- [ dy[ ati, 19
IV. APPLICATION TO THE VORTEX SOLUTION OF THE ) )
NONLINEAR DRIFT WAVE with the notation
A. The action functional . e e . e 3 ]
In order to adimensionalize Eq1) we introduce the 2= X (1= VD5 Vdgy —VdP Gy | TYe® T
space-and-time scales> )~ t andy— psy and the equation (19

becomes o ) _
When performing integrations by parts the boundary condi-

vg | de Uy do tions of the two functions prevents us from taking the inte-
T ¢—=0 (15) . ) S I )
Qps) dy Qps) © oy grals of exact differentials as vanishing, but this just pro
duces terms that do not contribute to the determination of the
For simplicity of notation we keep the symbo}, for the  solution of extremum. We shalll first change the B@) such
adimensional velocity «4/Qps). The equation does not as to pbtam by functhnal extremization dBuler-Lagrange
change in form but now all variables are adequately normalequation for the functiory
ized, and theaction

de
_y2\ 27
(1 Vi)&t +

de e 10 e
L5e=xGr ~IVEXIGp Foax 5y —vaxe o+ dee .
S= f dydt L<P (16) (20)

is also adimensional. Now we write the condition of extremum for the action func-

We have to calculate explicitely the scalar functign ~ tional and obtain the Euler-Lagrange equation
Based on the extended knowledge devgloped i'n field theory 4 L@ g s 4 s s
it seems reasonable to assume that this function represents = ““Je | = “Hde = THle  THle g
the generalization of the functions that have the opposite dt [do dx [de dy [de OS¢
evolution compared t@: if ¢ evolves toward infinite time, 5( E) (5) 5( W)
theny comes from infinite time toward the initial time. & (22)
diffuses theny antidiffuses(see Ref[30]). The general char-
acteristics of this behavior suggest to represemts the ob-  This equation can be written as
ject with the opposite topology thap. If ¢ has a certain
topological class, theg has the opposite topological class. If
¢ is an instanton theg is an anti-instanton. In our case if
is the vortex solution, theg must the “antivortex” solution,
with opposite vorticity everywhere compared ¢o In our  An equivalent form of the action is
case of a single vortexy must simply be a negative vortex.

In general terms, the directe., the vortex and random L T
drift waves solutione arises from an initial perturbation that Silx-e]= fo dyfo dtLy, (23
evolving in time breaks into several distinct vorticesli-
tong and a tail of drift waves, as shown by the inverse scatyyith
tering method. The functionally conjugatétregressive”)

ax ax ax

_y? AN A
(1 Vi)ﬂt +Ud(9y vdqoay J,. (22

function y is att=cc a collection of vortices and drift wave ax , . 0X ax % ax
turbulence that evolving backward in time, towardO, coa- Lix=—¢ ot +(Vie) ot Vd® W + Vd% W +J,0
lesce and build up into a single perturbation, the same as the

initial condition of ¢. We can restrict our analysis to the time +J,x- (24
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The equation Euler-Lagrange for the functignis obtained
from the extremum condition on the functional E83)

d oLy, d oLy, d oL, oLy,

— +— bk X

dt 5 dx\ dx 5 dx\ dy 5 &X) Sx
at ax ay

This equation reproduces the nonlinear vortex equation with

an inhomogeneous term

de de de
_v2\_ T T T

(1-Vi)— +vdﬁy VaP gy J. (26)

Comparing thehomogeneouggs. (22) (with J,=0) and

(26) (with J,=0) we see that
X=—¢, (27)

is indeed the solution of theomogeneoukq. (22), i.e., the

negative vortex is the solution foy.

We must remember that the “external” currents are arbi-
trary and later, after functional differentation, they will be
taken zero. This allows us to start from the configurations
given by thehomogeneousquations and Eq27) and study
the small changes using perturbative methods developed
the framework of the inverse scattering transform. We will
only use the currend, that will be denoted) and already

takeJ, =0.

The final form of the action that will be used later in this

work is

L T 2 do 140
sl [ dy |t xa-v) 5 rug

. (29

Je
X_Ud)(‘PW+J<P

B. The condition of extremum of the action functional

The Euler-Lagrange equations for the two functignand

¢ are obtained from the first functional derivative of the
action Sy: 8S;/6x=0 and dS;/5¢=0. The first equation
(which is the original equatigrhas the solutiori2). It does
not depend on the curredt(since the corresponding current
J, has been taken zerdHowever, for uniformity of notation

X .
we shall writee;s,

(PJS(vavt)E@S(Xiyvt)- (29)

The second Euler-Lagrange equation is the equation for

X, with the inhomogeneous term given by the currént

ax Ix ax
— 2 — —— —
(1 Vl)&t +Ud(9y Vg 2y J. (30
The solution is
X3sX,Y, 1) = = 0s(X,Y,1) + x5(X, Y1), (31

PHYSICAL REVIEW E 65 026406

where — @4(Xx,y,t) represents the “free” solution of the
variational equation, i.e., the negative vorténtisoliton
andy;(x,y,t) is the small modification induced by an inho-
mogeneous small termJ(x,y,t). Since the function
Y3(x,y,t) is the perturbation of the negative-vortex solution
we will use the Eq(26) but with the opposite currerit.e.,
—J instead ofl), as Eq.(30) requires.

C. Second order functional expansion and the eigenvalue
problem for the calculation of the determinant

Now we shall expand the actioB;[ ¢] to second order
around the saddle-point solution. Write

P=@5t 0, (32

X=Xast Ox,

where the function §¢,dy) is a small difference from the
extremum solution. The expanded form of the action will be
written as

5°S,
Silx,e1=Si[ ¢ys:x3sl + 2\ Spoy

‘PJs'XJs) 5(’06)('

here obviously the absence of the linear term is due to the
act that (p;5,x39 IS the solution at the extremum and

IPys 2 IPys
XJST_(VLXJS) P

L T
SileisiXasl= fo dyfo dt

d@;3s d@3s
+tUgXss ay ~UdXJisPis ay +J@s).

(33

Few manipulations are necessary to make the second func-
tional variation ofS; symmetric inS¢ and Sy. Again this

will imply boundary terms, but these are now zero since the
variationsd¢ and oy vanish at the limits of the space-time
domain, by definition. The transformations are simply inte-
grations by parts and give

L[5S, soeLaus| ¥ OB
2 X\ 5oy | asxas| OFT 2 9POX Py S
op
X
5] (34)
where
. J¢3s
a=(1 Vl)at”day vd( ay), (35
~ 1 (9(,03
BZE”“( ﬂys)’
~ d
7__20dXJsW-
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In the generating functional of the correlations, the expan- 4 P P
sion gives, after performing the Gaussian integral af= Eud[(l—vf) JS} 0g(1— @39 —ZJS
atay ay
1 5°S -1z 1 eyl @ 1 [de d
— ; ni2) J 2 Js Js 2
= — . + = - —| =+ +ki)—
Zy=expliSy - (2m) de( 5o ox X” (36) Sva(l m( % ) % Zvd( % )(1 kD)
(42
As stated before, the det will be calculated as the product of )
the eigenvalues,, Az_} o[ IP3s
8%S . : ,
de( & C1ety ):H An- (37)  The square brakets are used to underline that the differential
Spox |Fastas operators are not acting outside and the only operation is

multiplication. We use the equation verified by to make
We must find the eigenvalues of the differential operator apthe following replacement:
pearing in Eq(34)

Iy b3
. . (1-VH)—= = —va(l- %s)( ays) (44)
y  —a=B| [y ) 4 3
a-B O X T ) ( The equation becomes
which gives the following equation —{ (1+k%)? pe +2(1+k Jog(l— ‘P“)w
Yo (@2+ Bamap- B0 | UE=hdE. (39 vy o 20t 3 0032
n¥n - _ - @
An Tog(1—es9) PY: 4Ud< &y)
The functionsde(y,t) andSx(y,t) represent the differences d 5
between the solutions at extremysolitons and other func- +An _2UdXJsW PE=NL (45

tions that are in a neighborhodith the function spageof the

solitons. According to the discussion above, the functions \We now take into account the propagating nature of the
that are “close” to the solitons, for the Flierl-Petviashvilli drift waves and make the change of variabtest andy
equation are drift waves. For this reason the operator that,y—y i, i.e., we change to the system of reference moving
represents the d|spersm§ne v?) will be replaced with its  with the d|amagnet|c velocity. We simplify the equation as-
simplest form,—k? for these waves, witk, representingan suming that the most important space-time variation is wave-
average normallzed wave number for the pure drift turbulike and replaced/dt=—v4(d/dy). By this change of vari-
lence. However, the operator will be retained when appliedbles the soliton will not be at rest in the new reference
on the functions related to solitons, since these solutions owgystem, but it will move very slowly since we have assumed
their existence to the balance of nonlinearity and dispersiorthat u=v4. We make another approximation by neglecting
The following detailed expressions are obtained for the opthe slow motion of the soliton. This restricts us to the wave

erators involved in this equation: number spectrum but considerably simplifies the calcula-
tions. The space variable that will be denoted agamea-
P PPN 92 sures the space from the fixed center of the soliton, in the
=|(1- Vl) +vg——vgq4 JS” :(1+Ef)2(—) moving system. The difference between tkeV soliton,
at ay ay Jt which is one dimensional and depends exclusively@nd
995 @ 52 the vortex that is a two-dimensional structure will be consid-
—vd[(l Vz) : 5_+Ud(1 goJS)(lJrk )W ered in the simplest form as described by the estimation of
y y Meiss and Horton for th& extension of the vortex. For con-
92 5%5) 9 venience we suppress the indexand replaceyf by q.
+oug(l- 1+K)—=—v
dl ®39)( )&y&t d( — @39 ay | ay 2 )
52 [[(1+E)Ud_vd(l_¢Js)]2a_)/2+(2)\ UdXJs)E
+0i(1- @397 —, (40)
ay 3 (9(,DJ 2
+|A2- Zuﬁ( &ys) ]q=0. (46)
~~ 1 do do
Ba=> v( JS)(1+ >—+ vd( JS)(l—qus)—, . o |
2 2%\ gy ay We have a suggestive confirmation that the generating

(41)  function Z; (via the actionS;) potentially contains configu-
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rations of the system consisting of simple drift waves. A 5x109
perturbation consisting of drift waves and propagating with '
the diamagnetic velocity4 is an approximate solution of the 1,(y)
original equation for small amplitude.e., small nonlinear-

ity). Due to its particular structure, the Martin-Siggia-Rose %\ ) {w
=-3.144 x 10

action functional is exactly zero when calculated with the

A 0
exact solution, in the absence of any external curdefthe
action expanded to the second order then gives, for no vorte:

(¢35=0, x35=0)

? [ 2

ay? \Kug
which implies periodic oscillations in the space variaigle
with (recall that everything is adimensiohal

-5+

a=0, (47)

-10
U
N=kyva(k}). (49) yio,

Returning to the Eq(46), we write it in the following FIG. 2. The functiont,(y) for a particular soliton velocity,

form: u=1.72504.
92 (a(Ps 5
—2+A—+B)q=0, (49 1[(dps\2c—h 2 \1agy)~ 1 1|dx;
ay? 0 Ly)=——| = | ==+ — X — | o).
vg\ dY /) h Ud h Vg h?\ 9y
where (55
2
2)\ XJs _ 3 1 07@5
A= X (50) ta(y)=—7=|—| . (56)
Ud (E"‘%s)z 4h?\ 0y
and
)\2 3 (?(PJS)Z
AR c=k?, (57)
(K +e19% h=c+ ps.
Now we make the standard transformation of the unknown The functionst;(y) are represented far=1,2 in Figs. 2
function and 3. The function
q=w ex _EJ A(y")dy’ (51
has singularities at the points whdr@anishes. We introduce

the notationy,, for the location of the singularities, taking
into account the symmetry around=0, the center of the
soliton

and obtain

A A?
B— —— —|w=0, (52)

w'+ > ]

h(*=yn)=0. (59)

where prime means derivation with respecytéfter replac- ~ Since the soliton is very localized, the functithhas very
ing the two extremum solutions; and y ;. from Egs.(29)  fast variations close to the singularities. The slow variation
and (31), this equation is written in the following form to ©Of the function U(\;y) over most of the space interval

exhibit the dependence oa (—L/2,+L/2) becomes very fast due to the growth of the
absolute values df;, t,, andt; nearxy,, on spatial inter-
W+ (N2t + Ao+ tg)w=0, (53)  vals having an extension of the order of the spatial unit, i.e.,
ps in physical terms. Since the physical model leading to our
with the notations original equation cannot accurately describe the physical

processes at such scales, we shall adopt the simplest approxi-
mation ofU, assuming that it reaches infinite absolute value
(54 at points that are located within a distancepgbf the actual

t4(y) h?— (Pg 2 ¢
1y)=—
; positions of the singularitiest yi, . We have checked that the

R G F
Uqg h4 Ud h4
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4 10° In the integrand, the first term is factorized and, taking into
' ' ' account the relative magnitude of the terms, we expand the
t(Y)o.sf 1 square root and obtain
0.6t
| Y1

0.4 7 )\na'l-l-ﬁl-l- )\_|—27Tn, (61)

0 ie.,
-0.2r ( 1 2mn B1l(27)

1 _ 1
o4l | N, = o (1 o ) (62
_0_6_
where
-08f
. . . ~Yh
5 0 50 alzf dy’vti(y"), (63
y/pS —L/2
FIG. 3. The functiort,(y) of the Eq.(53) for the samau. _ ,
B= f gy 20 (64
l_ ] 1
L2 T Nty

exact position of the assumadfinite value of U has no
significant impact on the final results, which can be ex- )
plained by observing that; , 3 will be integrated on. The :ffyhd , ta(y")
total space interval is now divided into three domains: [ Va(y)’
(—=L/2,—y,) (external lef, (—yp,yn) (interna), and

(yn,L/2) (external right. Here “internal” and “external”re-  and y; has been neglected. We note tifatis positive.

fer to the region approximately occupied by the soliton. The On the “external right” domain the functiot is positive
form of the functionU imposes the functiomv to vanish at  butt, is negative. The condition on the phase is

the limits of these domains. In a more general perspective,

the fact thatw behaves independently on each domain has a Lz 1 ,
consequence with statistical mechanics interpretation: the y dy’ (Nt +Npttg) =270, (66)
generating functiona(similar to any partition functionis "

obtai_ned by i_ntegr{:\ting over the full spac_e_of Fhe System's;ng introduce similar notations

physical configurations and behaves multiplicatively for any

splitting of the whole function space into disjoint subspaces. L2
In particular the functional integration over the space of a2=J dy' Vti(y')=aq, (67)
functions ¢ and Sy actually consists of three functional Yh

integrations over the disjoint function subspaces correspond-

(65

ing to the three spatial domains. The fact that our physical 8 JL/Zd , to(y") 8 68)
model is restricted to spatial scales larger thamecessarily i 2 /—tl(Y') 1

has an impact on the maximum number of eigenvalugs
that should be retained in the infinite product giving the de-

terminant, but we shall not need to use this limitation. (Y2, tayh)
For absolute values of the i v2=| dy ' (69
paramekegreater than unity " 2\t(y)
[which will be confirmeda posteriori by the expressions
(62) and(71) below], the three terms in the expressionwf  The equation then becomes
have very different contributions. The termsis practically
negligible, and the term withy is always much greater than s
t, in absolute value. In the following we consider separately )\;,a2+ Bot+ ——=2mn’, (70)
the three domains. n’
On the “external left” domain, the functioty is positive.
If we fix at zero the amplitude and the phasencét the limit ~ Of
—L/2 the condition that the solution vanishes-ay,, gives,
for \ real, . 2mn’ B1/(27)
Ny = - 1+ - . (7D
2 n
f_yhdy’(xzt1+xt2+t3)l’2=27rn. (60) The infinite product of eigenvalues gives, for the “exter-
—L/2 nal” region [29]
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2 2/ 2 2
Il v =T1 (271 (1(—”))
n n' n aq n n
_sin(B4/2) 27n)\?
= 1l ( al) ' (72

In the “internal” region, the functiort, is negative. The

relations between the magnitudes of the absolute values of

the functionst,, t,, andt; are preserved. Thern will be
complex. Due to the antisymmetry of the functigrnwe can
suppose that the unknown functientakes zero value at
=0. We introduce the notations

Yh
ac= fo dy’v—=ty(y’), (73
Yh to(y')
pem [ May 2 (74
© o T 2y=ty)
Yh t3(y’)
Yo= f dy' ——, (75)
o T 2y=ti(y)
which arereal numbers. The condition
i Ye .
)\nac+ﬁc+)\—i=2ﬂ'ln, (76)

n

gives (after neglectingy.) for the complex numbexin,

AN =a Y 2mn)| 1+ e 1/2exp{—iarctar<2wn>
nT e e (2m)%n? B )

(77
The infinite product of these eigenvalues is
i 2mn
IT N =11 ac_l(an)exp{—i arctarE il )
n n Be
2 2\ 1/2
[(277)
x11 (1+—B° ;2 ) . (79)

The numberp. is smaller than unity and for large the

PHYSICAL REVIEW E 65 026406
We remark that we remain with two quantities in which

all the functional dependence on the curréris packed for
“exterior” B, (hereafter denoted) and for “interior” B,

(hereafter denote@).
g 528J —1/2
e
5€D 5X Pis1XJs

(27T)>

ZJ:eXF(iSJ)( I_

- B/z 1/: 0_/2 1/2
=constexpiSy)| giramy | | sinory| 0 @9
where
. 12
const=] ] (( 2;);]%) % (81

will disappear after the normalizations required by the calcu-
lation of the correlationgsee below.
V. CALCULATION OF THE CORRELATIONS

The two-point correlation can be obtained by a double
functional differentiation at the external curreht

27
_o-1_ 99
(e(y2)e(y1))=2; i16J(y,)idJ(yy)

J=0

The main achivement of this approach is that it provides the
explicit expression of the generating functional. We intro-
duce the notations

BIZ 1/4

A=A[J]= —sink(,B/Z)} , (82
ol2 Y2

B=B[J]= sin((r/Z)} : (83

and drop the factor const; actually the latter dependsepn
and e« and thus on the curredtand contributes to the func-
tional derivatives. However, taking a formal linfit to the
number of factors in Eq(81) we find that the functional
derivatives ofa; and a. give additive terms that vanish in
the limit N—<o. Then we drop const since it disappears after

argument of the exponential will be more and more close tdlividing toZ; and takingd=0. In this way Eq(80) becomes
—i 7/2. We make the approximation that the exponential can

be replaced with-i. Then we obtain Z;=expiS;)AB. (84)
~ IsinhBJ2) Y2 (—iV2mn We calculate the functional derivatives,
[T ap=| PRI T 2 g,
f Be N 52, 0, 1 oA 1 B Tis)AB
- = e e explo; .
On the “external’ regions the functions,, t, are not 193y [83(y1) = Aidd(y1) B id(y1) .

symmetrical around the centgr=0 since the perturbed soli-
ton develops a “tail” that is not symmetrical. However, we
take this perturbation to be small and assume the same alive will also need the functional derivative &ty,), with a
solute value for the functiog, on both external domains.  similar expression. The second derivative,
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-1 5°Z, _ 9S85 . 5°S; . 1 6A 55 . 1 6B 55
T i83(y2)idd(y1) |,_, 6I(y2) 8d(y1) 183(y2)8d(y1) A idd(yz) 8d(y1) B id(yz) 8I(y1)
+£.5A 55, +£ 6B 8S; +£ SA 1 4B +£ SA 1 4B
A16d(y1) 63(y2) Bi6d(yy) 63(y2) A i6d(y1) Bidd(y,) AidI(y,) Bisd(yy)
+£ 5°A +£ 5°B
A10J(y2)i10d(y1) B id3(y2)idd(y1)

(86)

The detailed expressions of these terms are given in the Aguch thatp,~10% m and vy~571 m/s. We recall that
pendix. The terms are calculated numerically using the dethere are two particular symmetry limitations of our calcula-
tailed expressions abs, dos/dy, x5 anddy;/dy. The con- tion. (1) The soliton center is assumed fixeat y=0), espe-
tributions are represented in Figs. 4-7 and their sum irtially for avoiding the complicated problem of theero
Fig. 8. modes(2) Due to the asymmetry of the perturbed soliton tail
The first term reproduces the self-correlation of the soli-the terms that results from the functional differentiation are
ton and represents the connection with the results of Refallso asymmetric. These are only limitations of our calcula-
[11], with our particular simplifications: single soliton and tion and in no way reflect the reality of a isotropic motion of
fixed (nonrandom position of its center. As can easily be many solitons in a real turbulent plasma. In order to see to
seen, the first order functional derivativesSyfto the current  what extent our result can be useful for understanding the
J reduce to the functiorp calculated in the corresponding (much more complicatgdeal situation we will symmetrize
points. The term with the double functional derivative of thethese terms in the unique mode that is accessible to our one-
action represents the contribution to the self-correlation oflimensional calculation, i.e., take into account the mixing of
the soliton due to a statistical ensemble of initial conditions perturbed solitons moving in the two directions on the line.
without drift waves. All mixed termgi.e., containing both The amplitude of the modifications of the soliton depends
the action and one of the factohsor B) represent interaction on a parameter, which is the average time of interaction with
between the perturbed soliton and the drift waves. The termiéhe perturbation. This average time is comparable with the
containing exclusively the factor&s and/orB refers to the time required to crosk at a speed of 4 and is limited since

drift wavesin the presencef the perturbed soliton. the growth of the perturbation cannot exceed the soliton it-
self.
V1. DISCUSSION AND CONCLUSIONS The figuresare conventional representations of functions

of two variables(y;,y»); they do not correspond to a two-
The formulas obtained by functional differentiation of the dimensional geometry. For this reason it is not expected to
generating functional are complicated and a numerical calcunavecircular symmetry. The contributions to the correlation
lation is necessary. We chose a particular value of the solitofrom the last two factors in Eq86) have amplitudes similar
velocity (which also fixes its amplitudeu=1.725v4 and let  or less by a factor of few units, compared to the pure soliton.
the variablesy; andy, sample the one-dimensional volume The factors coming from “internal” part are peaked and lo-
of length L=0.2 m. The physical parameters are chosercalized on the soliton extension while the “external” part

04 )

0.2 Lo

0.4l
50

60

40
20

v, le

s

0
-20

. -40 yP -
50 <o s 50

-60

FIG. 4. The contribution to the two-point correlation from the  FIG. 5. The contribution to the two-point correlation from the
term B[ 5B/ 83(y2) JA~ [ 5A/83(y1)]. term A~ [ 5A/83(y,) 1B~ [ 8B/ 83(y1)].
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-60

. * 0 -20
: 20 ¥, /P
60 gp 40 2 60 gp

40

FIG. 6. The contribution to the two-point correlation from the  FIG. 8. The perturbation to the correlation in physical space.
term A~ 182AI[ 8I(y,) 83(y1) ]

For simplicity we have assumed a single soliton. However

?A\ges ;?érgzn?ﬁgﬂgggg tgng(()lt,g f())lkvg]n(\;vﬁ?/ehli] l:énti)(()arrlssEricee’ the calculation can be readily extended to the multisoliton
. ) hig 9 ' case, considering instead of Eq29) and (31) sums over
spectrum of an unperturbed soliton is smooth and monoto-

nously decreasing from the peak valuekat0, as shown in many in.d.ividual soliton solutions with different velocities

) ) ' and positions of the centers. These sums replace the func-
Fig. 9. Figure 10 shows much more structure. In the low- : . ~ A
part there are many local peaks, an effective manifestation ¢fons ®1s and x;s in the expressions of the operatars 3,
the periodic character of the terrfi@s shown by Eq(72)].  andy. If the velocities are all greater but not too different
This arises from the discrete nature of the eigenvalues, whicfiom vy the change of variables to the referential moving
is induced by the second order differential operator and thavith vy [described in the paragraph below Ed5)] will
vanishing of the eigenmodes at the positions of the singularileave a very slow time variation that eventually may be
ties~ =y, . The singularities are generated by the vanishingreated perturbatively. Many solitons will also generate many
of the norm of the operatak, which makes ambiguous the singularities arising from the vanishing of the functigrand

assumption of propagating wave charactess —vyd, . The this will factorize the space of functions and correspondingly

largek part mainly reflects the structure of the small-scaletn® generating functional. It will become, however, possible

shape perturbation of the soliton, comming frggerelated to consider random positions and random velocities and av-
terms. Figure 11 is ak{) spectru,m obtained frorm—ku  €rage them with distribution functions for the Gibbs en-

_ : ; ; ; ; ble, as inll]. This is very simple with the first term of
=0 and repeating the calculations for various soliton veloci->€™M ! \ . :

ties Upmae>U>vy. Although we cannot afford high,,,, Since Eq. (86), V_Vh'Ch shoulo! t_)e compared d|rectly with .Ré .
the expressions of, ,«y) depend on the assumptian but technically very difficult with the terms involving func-

=v4, We remark local peaks in contrast to the “pure soli-tior_}_"’lhI d(;ri\{[ativesltoﬂ and/o;Btiq t th G ianity at th
ton” result of Ref.[11]. e first results suggest that the non-Gaussianity at the

o8f
kP,
0.6}
o4t

0.2

FIG. 7. The contribution to the two-point correlation from the
term B~ 182B/[ 83(y,) 83(y4)]. FIG. 9. Contour plot of the vortexkq ,k,) spectrum.
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0.2 APPENDIX: EXPLICIT EXPRESSIONS FOR THE
or FUNCTIONAL DERIVATIVES
-0 We shall first concentrate on the derivatives of the two
-04 factorsA and B,
-0.6
08 B 5 ol2 |2 1 1 L coga/2)
) - - - 8J(y1) 8d(yy)[sin(a/2)]  4|sinol2) 2 sirP(a/2)
1 0. 5 ke,
! al2 17V So
FIG. 10. Contour plot of the spectrum of the vortex perturbed by X sin(o/2) 8J(y,) (A1)
the turbulent drift waves.
and
plasma edge can be explained by the presence of coherent ) 5 12
structures. The contribution of avalanches to the deviation 5B _ g ol2
from the Gaussian statistics cannot be excluded but, as 8J(y,)8J(y,) 8I(Y2)8I(y1) |Sin(o/2)
shown for self-organized systerfi3l], they have a scaling "
that should be easily recognized, at least in frequency do- I 1+coS(o/2)
main. 8|sin(o/2) Sir?(a/2)
In conclusion we have developed an approach that allows
us to calculate the statistical properties of a coherent struc- 1 o2 1792 1
ture in a turbulent background. Compared to the standard " 16/sin(o/2) sin(o/2)
renormalization, this approach is at the opposite limit in what
concerns the relation “coherent structure/wave turbulence,” o coga/2) 2 Sor Sor
highlightning the coherent structure. However, it offers com- + = — ]( )( )
paratively greater possibilities for the extension of this stud- 2 sir?(ol2) 63(y2)/\ 83(y1)
ies to the more realistic problem of cascading wave turbu- 1
lence mixed with rising and decaying coherent structures. i } ol2 1
4|sin(o/2) sin(a/2)
ACKNOWLEDGMENTS 2
. - i cog o/2) ( 5o ) A2)
The authprs are indebted to J. H.. Mlsgwch and R. Balescu 2 sir(o12) |\ 83(y2) 33(yn) |
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M.V. gratefully acknowledge the support and hospitality of gy the exterior domains,
10X1O6 (T:(To+ajl+ajz (A3)
af with
8r 2c
m(s-1) 7L 1J*Yh (o"(ps) F_
=— dy'| —| —|—————=1, A4
6r 7075 )_ .Y 3y | (n2— p?)12 (A4)
5_
~ 1(-vn (§QDS> 1
4r = — d ! _—
o 791 ZLL/Z Y1 oy h(h2— p?)1/2
2r ps(2c—h) |~
x| 2— ——=1x5", A5
4t h2— @g XJ ( )
0 ~
0 - 1f*yhd , 1 (M?Xt) (A6)
UJZ_Z —L2 y (h2_(P§)l/2 (}ly

PHYSICAL REVIEW BE5 026406

FIG. 11. The contour plot of the frequency-wave number spec-

trum, with w —ku=0.

We have the following connected expressions:
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50’ . 5}J1 5}J2 (A?) 52’(}\]1 j ((9()05) 1
8d(yy)  8d(yy) S8y’ 83(y2)8d(y1) 2] -1 9y | h(h?— @2)12
5y _Efyhdy,(%) 1 _¢s(2c-h) o[, #s2e=h) ( x5 )
Iy 2)-1e 3y | h(h?— p2)12 h?— ¢? h?— 2 |\ 63(y2)8d(y1))’
P (Al11)
X , A8
yo) A8 i
5 t 8%0 3 1nyhd . (-1 5
— _ ex .
e L[ Mgy D2 (‘% ) 53y203y)  2) 1™ (e g2y 330y, 830y
0J(y1) 2)-L2 7 (h?— @22 8d(y1)
(Ag) aXeXt
g (A12)
and y
o Yoy N 8oy For the “interior” region, the derivatives oA, (which are
83(Y2)8d(y1)  83(y2)8I(y1)  8I(y2)8I(yy)’ strightforward will require the calculation of the derivatives
(A10) of B.
|
1 (aq;s)zc—h 21 (3<Ps)~im 11 dy
1fyhd val dy | h®  van®lay /M wgh? dy
=5 y
2o i@g_hz 12 1_ 205 . 12
02 h 2_ 2
|
The funct|on)(”1t and its derivative are present in the expres- 1 (¥n 1 dX'm
sion of g: o ,332— dy (e2—h?)12| dy
B=Bot Bt Biz,
1 (vyn dp 2c—h
BO:EJ dy ( J > 2 2 1/2‘|1
0 Y /h(gs—h?) and the derivatives at are easily calculated, as for.
The formulas above need to specify the expression of the
~ 1 (VYn &(PS 1 (Ps(zc_h) ~int ext ext
331:§f dy v S 2T 5 X | functionsy$*!, dx$*Yay, and of their functional derivatives.
0 Y 'h(es—h?) @s—h We use the results of the analysis carried out by Karpman.
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